Home > programming, research resources > Understanding Likelihood function

Understanding Likelihood function


This example is to illustrate the likelihood function of a binomial coin toss experiment.

 

 

 

两次投掷都正面朝上时的似然函数

考虑投掷一枚硬币的实验。通常来说,已知投出的硬币正面朝上和反面朝上的概率各自是p_H = 0.5,便可以知道投掷若干次后出现各种结果的可能性。比如说,投两次都是正面朝上的概率是0.25。用条件概率表示,就是:

P(\mbox{HH} \mid p_H = 0.5) = 0.5^2 = 0.25

其中H表示正面朝上。

在统计学中,我们关心的是在已知一系列投掷的结果时,关于硬币投掷时正面朝上的可能性的信息。我们可以建立一个统计模型:假设硬币投出时会有p_H  的概率正面朝上,而有1 - p_H 的概率反面朝上。这时,条件概率可以改写成似然函数:

L(p_H =  0.5 \mid \mbox{HH}) = P(\mbox{HH}\mid p_H = 0.5) =0.25

也就是说,对于取定的似然函数,在观测到两次投掷都是正面朝上时,p_H = 0.5 的似然性是0.25(这并不表示当观测到两次正面朝上时p_H= 0.5 的概率是0.25)。

如果考虑p_H = 0.6,那么似然函数的值也会改变。

L(p_H = 0.6 \mid \mbox{HH}) = P(\mbox{HH}\mid p_H = 0.6) =0.36

三次投掷中头两次正面朝上,第三次反面朝上时的似然函数

注意到似然函数的值变大了。这说明,如果参数p_H 的取值变成0.6的话,结果观测到连续两次正面朝上的概率要比假设p_H = 0.5 时更大。也就是说,参数p_H 取成0.6 要比取成0.5 更有说服力,更为“合理”。总之,似然函数的重要性不是它的具体取值,而是当参数变化时函数到底变小还是变大。对同一个似然函数,如果存在一个参数值,使得它的函数值达到最大的话,那么这个值就是最为“合理”的参数值。

在这个例子中,似然函数实际上等于:

L(p_H = \theta  \mid \mbox{HH}) = P(\mbox{HH}\mid p_H = \theta) =\theta^2 , 其中0 \le p_H  \le 1

如果取p_H = 1,那么似然函数达到最大值1。也就是说,当连续观测到两次正面朝上时,假设硬币投掷时正面朝上的概率为1是最合理的。

类似地,如果观测到的是三次投掷硬币,头两次正面朝上,第三次反面朝上,那么似然函数将会是:

L(p_H = \theta  \mid \mbox{HHT}) = P(\mbox{HHT}\mid p_H = \theta) =\theta^2(1 - \theta) , 其中T表示反面朝上,0 \le p_H  \le 1

这时候,似然函数的最大值将会在p_H = \frac{2}{3}的时候取到。也就是说,当观测到三次投掷中前两次正面朝上而后一次反面朝上时,估计硬币投掷时正面朝上的概率p_H = \frac{2}{3}是最合理的。

Advertisements
  1. No comments yet.
  1. No trackbacks yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: